如图,四棱柱中,平面.(Ⅰ)从下列①②③三个条件中选择一个做为的充分条件,并给予证明;①,②;③是平行四边形.(Ⅱ)设四棱柱的所有棱长都为1,且为锐角,求平面与平面所成锐二面角的取值范围.
(本小题满分分)选修:坐标系与参数方程选讲在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为(为参数),与分别交于.(Ⅰ)写出的平面直角坐标系方程和的普通方程;(Ⅱ)若成等比数列,求的值.
(本小题满分10分)选修4-1:几何证明选讲如图,在中,是的角平分线,的外接圆交于点,.(Ⅰ)求证:;(Ⅱ)当,时,求的长.
(本小题满分共12分)已知. 设.(Ⅰ)求在上的最大值.(Ⅱ)当时,试比较与的大小,并证明.
(本小题满分12分)已知点为轴上的动点,点为轴上的动点.点为定点,且满足,(Ⅰ)求动点的轨迹的方程.(Ⅱ)是上的两个动点,为的中垂线,求当的斜率为2时,在轴上的截距的范围.
(本小题满分12分)为了分流地铁高峰的压力,市发改委通过听众会,决定实施低峰优惠票价制度.不超过公里的地铁票价如下表:
现有甲、乙两位乘客,他们乘坐的里程都不超过公里.已知甲、乙乘车不超过公里的概率分别为,,甲、乙乘车超过公里且不超过公里的概率分别为, .(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量,求的分布列与数学期望.