如图,在三棱锥中,底面,,且,点是的中点,且交于点.(1)求证:平面;(2)当时,求三棱锥的体积.
设△的面积为,且.(1)求角的大小;(2)若,且角不是最小角,求的取值范围.
已知函数的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.
已知函数.(1)若,解方程;(2)若函数在上单调递增,求实数的取值范围;(3)若且不等式对一切实数恒成立,求的取值范围
已知,是平面上的两个定点,动点满足.(1)求动点的轨迹方程;(2)已知圆方程为,过圆上任意一点作圆的切线,切线与(1)中的轨迹交于,两点,为坐标原点,设为的中点,求长度的取值范围.
已知数列,是其前项的且满足(1)求证:数列为等比数列;(2)记,求的表达式。