某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,,,,(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望.
设函数,已知关于的方程的两个根为, (1)判断在上的单调性; (2)若,证明.
在直三棱柱中,∠ACB=90°,M是的中点,N是的中点。 (1)求证:MN∥平面; (2)求点到平面BMC的距离; (3)求二面角1的大小。
(本题12分)在一次国际比赛中,中国女排与俄罗斯女排以“五局三胜”制进行决赛,根据以往战况,中国女排在每一局中赢的概率都是,已知比赛中,俄罗斯女排先赢了第一局,求: (1)中国女排在这种情况下取胜的概率; (2)设比赛局数为,求的分布列及(均用分数作答).
已知函数在时取到最大值. (1)求函数的定义域; (2)求实数的值.
如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点. (1)求证:AB1//面BDC1; (2)求二面角C1—BD—C的余弦值; (3)在侧棱AA1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.