某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,,,,(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望.
已知函数(1)讨论函数的单调性并求其最大值(2)若,求证:
设=1+++…+(n),(1)分别求出满足++…+=g(n)(-1)的并猜想的表达式;(2)用数学归纳法证明:(1)中猜想所得的g(n)使得等式++…+=g(n)(-1)对于大于1的一切自然数n都成立。
如图,在直三棱柱ABC—A1B1C1中,AC=BC=AA1=2,∠ACB=90°,D、E、F分别为AC、AA1、AB的中点.(Ⅰ)求EF与AC1所成角的大小;(Ⅱ)求直线B1C1到平面DEF的距离.
袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球.(1)求第三个取出红球的概率;(2)求至少取到两个红球的概率;(3)(理)用分别表示取得的红球数与白球数,计算、、、.
设函数的最大值为M,最小正周期为T.(Ⅰ)求M、T;(Ⅱ)10个互不相等的正数满足求的值.