袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球.(1)求第三个取出红球的概率;(2)求至少取到两个红球的概率;(3)(理)用分别表示取得的红球数与白球数,计算、、、.
如图,是圆的直径,为圆上一点,,垂足为,点为圆上任一点,交于点,交于点. 求证:(1);(2).
已知函数,,. (1)若在存在极值,求的取值范围; (2)若,问是否存在与曲线和都相切的直线?若存在,判断有几条?并求出公切线方程,若不存在,说明理由。
椭圆与轴负半轴交于点,为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接交于点D。 (1)如果,求椭圆的离心率; (2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。
已知在正方体中,分别是的中点,在棱上,且. (1)求证:; (2)求二面角的大小.
在一段时间内,某种商品价格(万元)和需求量之间的一组数据为:
(1)进行相关性检验; (2)如果与之间具有线性相关关系,求出回归直线方程,并预测当价格定为1.9万元,需求量大约是多少?(精确到0.01) 参考公式及数据:,, 相关性检验的临界值表: