袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球.(1)求第三个取出红球的概率;(2)求至少取到两个红球的概率;(3)(理)用分别表示取得的红球数与白球数,计算、、、.
已知数列满足.(Ⅰ)证明数列是等差数列;(Ⅱ)求数列的通项公式;(Ⅲ)设,求数列的前项和.
已知函数(1)求得最小正周期;(2)求在区间上的取值范围.
已知函数的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像.(1)求函数与的解析式;(2)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数;若不存在,说明理由.(3)求实数与正整数,使得在内恰有2013个零点.
已知函数,其中函数在上是减函数.(1)求曲线在点处的切线方程;(2)若在上恒成立,求得取值范围.(3)关于的方程,有两个实根,求的取值范围.
如图分别是正三棱台的直观图和正视图,分别是上下底面的中心,是中点. (1)求正三棱台的体积;(注:棱台体积公式:,其中为棱台上底面面积,为棱台下底面面积,为棱台高);(2)求平面与平面的夹角的余弦;(3)若是棱上一点,求的最小值.