已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和个黑球(为正整数).现从甲、乙两个盒内各任取2个球,若取出的4个球均为黑球的概率为,求(1)的值;(2)取出的4个球中黑球个数大于红球个数的概率.
已知函数(,) (1)求的值域; (2)若,且的最小值为,求的递增区间.
已知偶函数满足:当时,, 当时, (1) 求当时,的表达式; (2) 试讨论:当实数满足什么条件时,函数有4个零点, 且这4个零点从小到大依次构成等差数列.
已知函数 (I)如果对任意恒成立,求实数a的取值范围; (II)设函数的两个极值点分别为判断下列三个代数式: ①②③中有几个为定值?并且是定值请求出; 若不是定值,请把不是定值的表示为函数并求出的最小值.
对于函数,若存在,使,则称是的一 个"不动点".已知二次函数 (1)当时,求函数的不动点; (2)对任意实数,函数恒有两个相异的不动点,求的取值范围; (3)在(2)的条件下,若的图象上两点的横坐标是的不动点, 且两点关于直线对称,求的最小值.
将函数的图像向左平移1个单位,再将图像上的所 有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数的图像. (1)求函数的解析式和定义域; (2)求函数的最大值.