(本小题满分12分)已知椭圆的焦距为4,且与椭圆有相同的离心率,斜率为的直线经过点,与椭圆交于不同两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)当椭圆的右焦点在以为直径的圆内时,求的取值范围.
已知向量与,其中 (Ⅰ)若,求和的值; (Ⅱ)若,求的值域.
设函数的定义域为集合,函数的定义域为集合,已知:;:满足,且若则为真命题,求实数的取值范围.
已知函数,(为常数) (1)当时恒成立,求实数的取值范围; (2)若函数有对称中心为A(1,0),求证:函数的切线在切点处穿过图象的充要条件是恰为函数在点A处的切线.(直线穿过曲线是指:直线与曲线有交点,且在交点左右附近曲线在直线异侧)
已知二次函数与交于两点且,奇函数,当时,与都在取到最小值. (1)求的解析式; (2)若与图象恰有两个不同的交点,求实数的取值范围.
已知:三个内角A,B,C所对的边,向量,设 (1)若,求角; (2)在(1)的条件下,若,求三角形ABC的面积.