(本小题满分12分)已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(I)当x=2时,求证:BD⊥EG ;(II)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(III)当取得最大值时,求二面角D-BF-C的余弦值.]
△ABC的三边a,b,c满足b=8-c,,试确定△ABC的形状。
已知函数f(x)=, 其中为常数,若当x∈(-∞, 1]时, f(x)有意义,求实数a的取值范围.
在数列{an}中,a1=15,以后各项由 an+1=an-,求数列{an}的前n项和的最大值.
已知,t∈[,8],对于f(t)值域内的所有实数m,不等式恒成立,求x的取值范围。
已知函数f(x)=(a>0,x>0). (1)求证:f(x)在(0,+∞)上是增函数; (2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围; (3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.