已知椭圆过点和点.(1)求椭圆的方程;(2)设过点的直线与椭圆交于两点,且,求直线的方程.
一个袋中有红、白两种球各若干个,现从中一次性摸出两个球,假设摸出的两个球至少有一个红球的概率为,至少一个白球的概率为,求摸出的两个球恰好红球白球各一个的概率.
已知抛物线上点到焦点的距离为4.(1)求,值;(2)设,是抛物线上分别位于轴两侧的两个动点,且(其中为坐标原点).求证:直线过定点,并求出该定点的坐标.
在数列中,已知,且().(1)求,,;(2)猜想数列的通项公式,并用数学归纳法证明.
如图,在直三棱柱中,⊥,,,,是的中点,求直线与平面所成角的正弦值.
已知函数.(1)求的解析式;(2)求的减区间.