在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案:(1)若这四个点的纵坐标若保持不变,横坐标变为原来的,所得图案与原来的图案相比有什么变化?(2)横坐标不变,纵坐标分别减3,所得图案与原来图案相比有什么变化?(3)横坐标、纵坐标分别变为原来的2倍,所得图形与原图形相比有什么变化?
已知关于x的一元二次方程x2-(2k+1)x+k2+k=0. (1)求证:方程有两个不相等的实数根; (2)若周长为16的等腰△ABC的两边AB,AC的长是方程的两个实数根,求k的值.
如图△ABC中,DE∥BC,,M为BC上一点,AM交DE于N. (1)若AE=4,求EC的长; (2)若M为BC的中点,=36,求
解方程: (1)=0 (2).
如图,已知抛物线(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0). (1)b=,点B的横坐标为(上述结果均用含c的代数式表示); (2)连接BC,过点A作直线AE∥BC,与抛物线交于点E.点D是x轴上一点,其坐标为(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S. ①求S的取值范围; ②若△PBC的面积S为整数,则这样的△PBC共有个.
如图,点A是x轴正半轴上的动点,点B的坐标为(0,4),将线段AB的中点绕点A按顺时针方向旋转90°得点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连接AC、BC、CD,设点A的横坐标为t. (Ⅰ)线段AB与AC的数量关系是,位置关系是. (Ⅱ)当t=2时,求CF的长; (Ⅲ)当t为何值时,点C落在线段BD上?求出此时点C的坐标; (Ⅳ)设△BCE的面积为S,求S与t之间的函数关系式.