如图,扇形OAB的半径为4,圆心角∠AOB=90°,点C是上异于点A、B的一动点,过点C作CD⊥OB于点D,作CE⊥OA于点E,联结DE,过O点作OF⊥DE于点F,点M为线段OD上一动点,联结MF,过点F作NF⊥MF,交OA于点N.(1)当时,求的值;(2)设OM=x,ON=y,当时,求y关于x 的函数解析式,并写出它的定义域;(3)在(2)的条件下,联结CF,当△ECF与△OFN相似时,求OD的长.
如图,已知∠AOB, OE平分∠AOC, OF平分∠BOC.(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度数;(2)猜想∠EOF与∠AOB的数量关系;(3)若∠AOB+∠EOF=156°,则∠EOF是多少度?
A、B、C、D、E五个车站的距离如图所示(单位:km).⑴求D、E两站的距离;⑵如果b=4,D为线段AE的中点,求a的值.
一项工程,甲单独完成需要9天,乙单独完成需要12天,丙单独完成需要15天.若甲、丙先做3天后,甲因故离开,由乙接替甲工作,问还需多少天能完成这项工程的?
如图,是由若干个完全相同的小正方体组成的一个几何体.⑴请画出这个几何体的主视图、左视图和俯视图;⑵如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?
已知,是方程的解,求代数式的值.