把一张矩形纸片ABCD按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3 cm,BC =4 cm.(1)求线段DF的长;(2)连接BE,求证:四边形BFDE是菱形;(3)求线段EF的长.
如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形的面积.
如图,在△ABC中,CD⊥AB,∠ACD=45°,∠DCB=60°,AC=,求AB.
如图,已知一次函数与反比例函数的图象交于A,B两点.求A,B两点的坐标.
已知:点O到△ABC的两边AB、AC所在直线的距离相等,即OD⊥AB于点D,OE⊥AC于点E,OD=OE,且OB=OC。(1)如图,若点O在BC上,求证:AB=AC;(2)如图,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示(只需画图即可)。
在一次消防演习中,消防员架起一架25米长的云梯AB,如图斜靠在一面墙上,梯子底端B离墙基C处7米. (1)求这个梯子的顶端距地面有多高? (2)如果消防员接到命令,要求梯子的顶端A下降4米至E处(云梯长度不变),那么云梯的底部在水平方向滑动距离BF为多少米?