如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.
已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)直线与椭圆交于两点,点是椭圆的右顶点.直线与直线分别与轴交于点,试问以线段为直径的圆是否过轴上的定点?若是,求出定点坐标;若不是,说明理由.
已知函数,.(1)求函数的单调区间;(2)若函数在区间的最小值为,求的值.
如图,四棱锥的底面为正方形,侧面底面.为等腰直角三角形,且.,分别为底边和侧棱的中点.(1)求证:∥平面;(2)求证:平面; (3)求二面角的余弦值.
某单位从一所学校招收某类特殊人才.对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:例如,表中运动协调能力良好且逻辑思维能力一般的学生有人.由于部分数据丢失,只知道从这位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为.(1)求,的值;(2)从参加测试的位学生中任意抽取位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率;(3)从参加测试的位学生中任意抽取位,设运动协调能力或逻辑思维能力优秀的学生人数为,求随机变量的分布列及其数学期望.
已知函数,.(1)求的值及函数的最小正周期;(2)求函数在上的单调减区间.