已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.
在△ABC中,P为边AB上一点.
(1)如图1,若 ∠ ACP = ∠ B ,求证: A C 2 = AP • AB ;
(2)若M为CP的中点, AC = 2 .
①如图2,若 ∠ PBM = ∠ ACP , AB = 3 ,求BP的长;
②如图3,若 ∠ ABC = 45 ° , ∠ A = ∠ BMP = 60 ° ,直接写出BP的长.
某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:
产品
每件售价(万元)
每件成本(万元)
每年其他费用(万元)
每年最大产销量(件)
甲
6
a
20
200
乙
10
40+0.05x2
80
其中a为常数,且 3 ≤ a ≤ 5 。
(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.
(1)求证:AC平分 ∠ DAB ;
(2)连接BE交AC于点F,若 cos ∠ CAD = 4 5 ,求 AF FC 的值.
已知反比例函数 y = 4 x .
(1)若该反比例函数的图象与直线 y = kx + 4 ( k ≠ 0 ) 只有一个公共点,求k的值;
(2)如图,反比例函数 y = 4 x ( 1 ≤ x ≤ 4 ) 的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.
某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.
请你根据以上的信息,回答下列问题:
(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .
(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.