某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n)=,其中,a,b为常数,n∈N,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍. (1)栽种多少年后,该树木的高度是栽种时高度的8倍;(2)该树木在栽种后哪一年的增长高度最大.
已知抛物线上一点到焦点的距离为,求此点坐标.
已知椭圆,右焦点为,求连接和椭圆上任意一点的线段的中点的轨迹方程.
已知是过点的两条互相垂直的直线,且与双曲线各两个交点,分别为和. (1)求的斜率的取值范围;(2)若,求的方程.
已知抛物线的焦点为,以为圆心,长为半径,在轴上方的半圆交抛物线于不同的两点,,是的中点. ⑴求的值; ⑵是否存在这样的值,使,,成等差数列?
已知直线过坐标原点,抛物线的顶点在原点,焦点在轴正半轴上,若点和点关于的对称点都在上,求直线和抛物线的方程.