袋中装有若干个质地均匀大小一致的红球和白球,白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直至第5次摸球后结束.(1)求摸球3次就停止的事件发生的概率;(2)记摸到红球的次数为,求随机变量的分布列及其期望.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为. (Ⅰ)求乙投球的命中率; (Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.
已知向量, , . (Ⅰ)求的值; (Ⅱ)若, , 且, 求的值。
(本小题满分14分)已知f(x)=(x∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a的值组成的集合A; (Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(本小题满分12分)已知椭圆的左、右焦点分别为、,其中也是抛物线的焦点,是与在第一象限的交点,且. (1)求椭圆的方程; (2)已知菱形的顶点在椭圆上,顶点在直线上,求直线的方程.
(本小题满分12分)已知数列、满足,且, (1)令,求数列的通项公式; (2)求数列的通项公式及前项和公式.