袋中装有若干个质地均匀大小一致的红球和白球,白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直至第5次摸球后结束.(1)求摸球3次就停止的事件发生的概率;(2)记摸到红球的次数为,求随机变量的分布列及其期望.
(本小题满分12分)已知数列(I)设的通项公式;(II)当
(本小题满分12分)已知F1、F2分别是双曲线的左、右焦点,以坐标原点O为圆心,以双曲线的半焦距c为半径的圆与双曲线在第一象限的交点为A,与y轴正半轴的交点为B,点A在y轴上的射影为H,且(I)求双曲线的离心率;(II)若AF1交双曲线于点M,且的值.
(本小题满分12分)已知函数.(I)求的单调区间;(II)求证:不等式恒成立.
(本小题满分12分)某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为、,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一题即可被聘用(假设每个环节的每个问题回答正确与否是相互独立的).(I)求该学生被公司聘用的概率;(II)设该学生答对题目的个数为,求的分布列和数学期望.
(本小题满分12分)如图,已知正三棱柱ABC—A1B1C1的底面边长是2,D是CC1的中点,直线AD与侧面BB1C1C所成的角是45°.(I)求二面角A—BD—C的大小;(II)求点C到平面ABD的距离.