已知两条直线,相交于点.(1)求交点的坐标;(2)求过点且与直线垂直的直线的方程.
如图,在四棱锥 S - A B C D 中, A D ∥ B C 且 A D ⊥ C D ;平面 C S D ⊥ 平面 A B C D , C S ⊥ D S , C S = 2 A D = 2 ; E 为 B S 的中点, C E = 2 , A S = 3 。求:
(Ⅰ)点 A 到平面 B C S 的距离; (Ⅱ)二面角 E - C D - A 的大小。
如图,已知矩形ABCD,M,N分别是AD,BC的中点,且AM=AB,将矩形沿MN折成直二面角,若P点是线段DN上一动点,求P到BM距离的最小值。
在四面体ABCD中,AB=AD=,BC=CD=3,AC=,BD=2.(1)平面ABD与平面BCD是否垂直?证明你的结论;(2)求二面角A-CD-B的正切值。
如图,平面∥,AB和AC是夹在平面与之间的两条线段,AB⊥AC,且AB=2,直线AB与平面所成角为30°,求线段AC长的取值范围。
.如图,ABCD-A1B1C1D1是棱长为的正方体,M,N,P,Q,R,S分别是AA1,AB,AD,CC1,B1C1,C1D1的中点,求证:平面PMN∥平面QRS。