(本小题满分13分)已知函数,其中e为自然对数的底数.(1)求曲线在点处的切线方程;(2)若对任意,不等式恒成立,求实数m的取值范围;(3)试探究当时,方程的解的个数,并说明理由.
已知向量. (1)当时,求的值; (2)设函数,已知在△ABC中,内角A、B、C的对边分别为,若,求()的取值范围.
已知数列的前项和, (1)求和; (2)记,求数列的前项和.
如图,是圆的直径,点在圆上,,交于点,平面,,. (1)证明:; (2)求平面与平面所成的锐二面角的余弦值.
已知为等差数列,且,。 (1)求的通项公式; (2)若等比数列满足,,求的前n项和公式.
(本小题满分13分) 已知数列满足,且当时,,令. (Ⅰ)写出的所有可能的值; (Ⅱ)求的最大值; (Ⅲ)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.