某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有位学生,每次活动均需该系位学生参加(和都是固定的正整数)。假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系位学生,且所发信息都能收到。记该系收到李老师或张老师所发活动通知信息的学生人数为(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(2)求使取得最大值的整数。
(本小题满分12分) 已知数列满足,. (1)计算,,,的值; (2)根据以上计算结果猜想的通项公式,并用数学归纳法证明你的猜想.
(本小题满分12分)已知为实数, (1)求导数; (2)若,求在[-2,2]上的最大值和最小值;
(本小题满分12分)已知复数,当实数为何值时, (1)为实数;(2)为虚数;(3)为纯虚数.
(本小题满分14分) 已知函数(). (1)若时,求函数的值域; (2)若函数的最小值是1,求实数的值.
(本小题满分14分) 某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台.现销售给A地10台,B地8台.已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的费用分别为300元和500元. (1)设从甲地调运x台至A地,求总费用y关于台数x的函数解析式; (2)若总运费不超过9000元,问共有几种调运方案; (3)求出总运费最低的调运方案及最低的费用.