对一批共50件的某电器进行分类检测,其重量(克)统计如下:
规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A”型2件(1)从该批电器中任选1件,求其为“B”型的概率;(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.
设数列为等差数列,且,,数列的前项和为,且. (1)求数列,的通项公式; (2)若,为数列的前项和,对恒成立,求的最小值.
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点. (1)求证:BD⊥FG; (2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由. (3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
在对某渔业产品的质量调研中,从甲,乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克). 下表是测量数据的茎叶图: 规定:当产品中的此种元素含量毫克时为优质品. (1)试用上述样本数据估计甲,乙两地该产品的优质品率(优质品件数/总件数); (2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数的分布列及数学期望.
在中,角所对的边为,且满足 (1)求角的值; (2)若且,求的取值范围.
设和是函数的两个极值点,其中. (1)求的取值范围; (2)若为自然对数的底数),求的最大值.