·新课标理)平面直角坐标系xOy中,过椭圆M:右焦点的直线交于A,B两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值
圆O1和O2的极坐标方程分别为. (1)把圆O1和O2的极坐标方程化为直角坐标方程; (2)求经过圆O1和O2交点的直线的直角坐标方程.
已知二次函数为整数)且关于的方程在区间内有两个不同的实根,(1)求整数的值;(2)若时,总有,求的最大值。
已知函数, 若数列(n∈N*)满足:, (1) 证明数列为等差数列,并求数列的通项公式; (2) 设数列满足:,求数列的前n项的和.
已知向量,设函数其中xÎR. (1)求函数的最小正周期和单调递增区间. (2)将函数的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移个单位得到的图象,求的解析式.
(1)解不等式; (2)已知, 且, 求的最小值;