数列{xn}满足x1=0,xn+1=-xn2+xn+c(n∈N*).(1)证明:{xn}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{xn}是递增数列.
(12分)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=+6x的图象关于y轴对称.(1)求m、n的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
设等比数列的前项和为,已知N).(1)求数列的通项公式;(2)在与之间插入n个数,使这n+2个数组成公差为的等差数列,求数列的前项和.
(12分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F-BD-C的余弦值.
已知函数(1)求函数f(x)的最小值和最小正周期;(2)设△ABC的内角的对边分别为a,b,c且=,,若向量共线,求的值.