如图,已知双曲线的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆相切,且与双曲线左、右两支的交点分别为.(1)求k的取值范围,并求的最小值;(2)记直线的斜率为,直线的斜率为,那么是定值吗?证明你的结论.
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,,平面底面,为中点,M是棱PC上的点,.(1)若点M是棱PC的中点,求证:平面;(2)求证:平面底面;(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.
在中,角、、所对的边分别为,.(1)求角的大小;(2)若,求函数的最小正周期和单调递增区间.
已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.(1)求椭圆方程.(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.
已知(1)若时,求函数在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围;(3)令是否存在实数,当是自然对数的底)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由.