如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cos A=.(1)求线段CD的长;(2)求sin ∠DBE的值.
某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示: (1)该商场购进甲、乙两种矿泉水各多少箱? (2)全部售完500箱矿泉水,该商场共获得利润多少元?
水龙头关闭不严会造成滴水,容器内盛水时w(L)与滴水时间t(h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题. (1)容器内原有水多少升? (2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?
如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,点A的坐标为(4,0),抛物线的对称轴是直线. (1)求抛物线的解析式; (2)M为第一象限内的抛物线上的一个点,过点M作MG⊥x轴于点G,交AC于点H,当线段CM=CH时,求点M的坐标; (3)在(2)的条件下,将线段MG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段MG与抛物线交于点N,在线段GA上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.
如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上. (1)求证:直线FG是⊙O的切线; (2)若CD=10,EB=5,求⊙O的直径.
某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务. (1)按原计划完成总任务的时,已抢修道路米; (2)求原计划每小时抢修道路多少米?