定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;(2)试求一个函数,使(为常数,)为广义周期函数,并求出它的一个广义周期和周距;(3)设函数是周期的周期函数,当函数在上的值域为时,求在上的最大值和最小值.
已知数列是公差不为0的等差数列,,且,,成等比数列.(1)求数列{an}的通项公式;(2)设,求数列的前项和。
设向量,,(1)若,求的值; (2)设函数,求的最大值。
观察以下各等式: ,分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明。
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:,,,,分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成的列联表,并判断是否有的把握认为“生产能手与工人所在的年龄组有关”?附表:
从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得,,,.(1)求家庭的月储蓄对月收入的线性回归方程;(2)判断变量与之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.其中,为样本平均值,线性回归方程也可写为附:线性回归方程中,,,