(本小题满分12分)为了解大学生身体素质情况,从某大学共800名男生中随机抽取50人测量身高。 据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组;第二组;…;第八组.如图是按上述分组方法得到的频率分布直方图.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为,求满足“”的事件的概率.
(满分12分)已知椭圆的一个顶点为B,离心率, 直线l交椭圆于M、N两点. (Ⅰ)求椭圆的标准方程; (II)如果ΔBMN的重心恰好为椭圆的右焦点F,求直线的方程.
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。 (Ⅰ)求证:B1C//平面A1BD; (Ⅰ)求二面角A—A1B—D的余弦值。
(满分12分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示. (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差; (II)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
(满分12分)设数列的前项和为.已知,,。 (Ⅰ)求数列的通项公式; (Ⅱ)记为数列的前项和,求;
(本小题满分13分) 已知函数 (1) 当时,求函数的最值; (2) 求函数的单调区间;