(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,圆的参数方程为,(为参数,).以为极点,轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线的极坐标方程为.写出圆心的极坐标,并求当为何值时,圆上的点到直线的最大距离为3.
已知函数为自然对数的底数).(1)求曲线在处的切线方程;(2)若是的一个极值点,且点,满足条件:.(ⅰ)求的值;(ⅱ)求证:点,,是三个不同的点,且构成直角三角形.
已知:复数,,且,其中、为△ABC的内角,、、为角、、所对的边.(1)求角的大小;(2)若,求△ABC的面积.
已知函数(1)若在上是增函数,求的取值范围;(2)若在处取得极值,且时,恒成立,求的取值范围.
如图,设A是单位圆和轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且,.(1)若点Q的坐标是,求的值;(2)设函数,求的值域.
已知命题:关于的不等式对一切恒成立;命题:函数在上递减.若为真,为假,求实数的取值范围.