如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,求BC的值.
设点是曲线上的动点,点到点(0,1)的距离和它到焦点的距离之和的最小值为. (1)求曲线C的方程; (2)若点的横坐标为1,过作斜率为的直线交于点,交轴于点,过点且与垂直的直线与交于另一点,问是否存在实数,使得直线与曲线相切?若存在,求出的值;若不存在,请说明理由.
已知等差数列的公差大于0,且、是方程的两根.数列的前项和为,满足 (Ⅰ)求数列,的通项公式; (Ⅱ)设数列的前项和为,记.若为数列中的最大项,求实数的取值范围.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种 产品受欢迎的概率分别为,且不同种产品是否受欢迎相互独立.记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(Ⅰ)求该公司至少有一种产品受欢迎的概率; (Ⅱ)求的值; (Ⅲ)求数学期望.
如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面, (Ⅰ)求证:; (Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.
已知函数. (1)若,求的值; (2)设△三内角所对边分别为且,求在上的值域.