已知椭圆中心在原点,焦点在y轴上,离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的标准方程;(Ⅱ)设点F是椭圆在y轴正半轴上的一个焦点,点A,B是抛物线上的两个动点,且满足,过点A,B分别作抛物线的两条切线,设两切线的交点为M,试推断是否为定值?若是,求出这个定值;若不是,说明理由.
数列是递增的等比数列,且. (Ⅰ)若,求证:数列是等差数列; (Ⅱ)若,求的最大值.
已知函数的图象经过点. (1)求函数的最小正周期与单调递增区间. (2)若,且,求的值.
(本小题满分13分)已知函数. (Ⅰ)当时,求函数的极值; (Ⅱ)时,讨论的单调性; (Ⅲ)若对任意的恒有成立,求实数的取值范围.
(本小题满分13分)已知函数. (Ⅰ)求函数的定义域; (Ⅱ)若,求的取值集合及的值.
(本小题满分12分)已知函数. (Ⅰ)若求函数在上的最大值; (Ⅱ)若对任意,有恒成立,求的取值范围.