某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同.(1)求3个学生选择了3门不同的选修课的概率;(2)求恰有2门选修课这3个学生都没有选择的概率;(3)设随机变量X为甲、乙、丙这三个学生选修数学史这门课的人数,求X的分布列.
集合P={x︱x2-2x-3=0},S={x︱ax+2=0},SÍP,求a的值。
如图,有一壁画,最高点A处离地面4m,最低点B处离地面2m,若从离地高1.5m的处观赏它,则离墙多远时,视角最大?
选做题(本小题满分10分。请考生三两题中任选一题做答,如果多做,则按所做的第一题记分)选修4-1:几何证明选讲如图,圆O的直径AB=10,弦DE⊥AB于点H,BH=2。1)求DE的长;(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2,求PD的长。选修4-5:不等式选讲(Ⅰ)若与2的大小,不用说明理由;(Ⅱ)设m是和1中最大的一个,当
已知函数(1)当时,求函数的单调区间;(2)求函数在区间上的最小值.
已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,且满足||||+·=0.(1)求点P的轨迹C的方程;(2)设过点N的直线l的斜率为k,且与曲线C相交于点S、T,若S、T两点只在第二象限内运动,线段ST的垂直平分线交x轴于Q点,求Q点横坐标的取值范围.