(满分15分)设函数,,(其中为自然底数);(Ⅰ)求()的最小值;(Ⅱ)探究是否存在一次函数使得且对一切恒成立;若存在,求出一次函数的表达式,若不存在,说明理由;(Ⅲ)数列中,,,求证:。
【2015高考浙江,文20】设函数.(1)当时,求函数在上的最小值的表达式;(2)已知函数在上存在零点,,求的取值范围.
【2015高考新课标1,文21】(本小题满分12分)设函数.(Ⅰ)讨论的导函数的零点的个数;(Ⅱ)证明:当时.
【2015高考天津,文20】(本小题满分14分)已知函数(Ⅰ)求的单调区间;(Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(Ⅲ)若方程有两个正实数根且,求证:.
【2015高考四川,文21】已知函数f(x)=-2lnx+x2-2ax+a2,其中a>0.(Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
【2015高考山东,文20】设函数.已知曲线 在点处的切线与直线平行. (Ⅰ)求的值; (Ⅱ)是否存在自然数,使得方程在内存在唯一的根?如果存在,求出;如果不存在,请说明理由; (Ⅲ)设函数(表示,中的较小值),求的最大值.