【2015高考山东,文20】设函数.已知曲线 在点处的切线与直线平行. (Ⅰ)求的值; (Ⅱ)是否存在自然数,使得方程在内存在唯一的根?如果存在,求出;如果不存在,请说明理由; (Ⅲ)设函数(表示,中的较小值),求的最大值.
已知函数。当时,函数的取值范围恰为。 (1)求函数的解析式; (2)若向量,解关于的不等式。
某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙。已知从城市甲到城市乙只有两条公路,且运费由果园承担。若果园恰能在约定日期(×月×日)将水果送到,则销售商一次性支付给果园20万元;若在约定日期前送到,每提前一天销售商将多支付给果园1万元。若在约定日期后运到,每 迟到一天销售商将少支付给果园l万元。为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果。已知下表内的信息: (1)记汽车走公路1时果园获得的毛利润为(单位:万元),求的分布列和数学期望; (2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多? 注:毛利润=销售商支付给果园的费用-运费
如图,在等腰梯形中,已知均为梯形的高,且。现沿将和折起,使点重合为一点,如图②所示。又点为线段的中点,点在线段上,且。 (1)求线段的长; (2)求二面角的大小。
在中,内角所对的边分别为,已知。 (1)求的长及的大小; (2)若,求函数的值域。
已知函数在[1,+∞)上为增函数, 且,,. (1)求的值;(2)若在[1,+∞)上为单调函数,求m的取值范围; (3)设,若在[1,e]上至少存在一个,使得成立,求的取值范围.