如图,直线与抛物线(常数)相交于不同的两点、,且(为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).(1)用、表示出点、点的坐标,并证明垂直于轴;(2)求的面积,证明的面积与、无关,只与有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连、,再作与、平行的切线,切点分别为、,小张马上写出了、的面积,由此小张求出了直线与抛物线围成的面积,你认为小张能做到吗?请你说出理由.
已知函数的图像(如图所示)过点、和点,且函数图像关于点对称;直线和及是它的渐近线.现要求根据给出的函数图像研究函数的相关性质与图像,(1)写出函数的定义域、值域及单调递增区间;(2)作函数的大致图像(要充分反映由图像及条件给出的信息);(3)试写出的一个解析式,并简述选择这个式子的理由(按给出理由的完整性及表达式的合理、简洁程度分层给分
已知为坐标原点,点,对于有向量,(1)试问点是否在同一条直线上,若是,求出该直线的方程;若不是,请说明理由;(2)是否在存在使在圆上或其内部,若存在求出,若不存在说明理由.
一个棱长为的正方体的八个顶角上分别截去一个三棱锥,使截掉棱锥后的多面体有六个面为正八边形,八个面为正三角形(如图所示),(1)求异面直线与所成角的大小;(2)求此多面体的体积(结果用最简根式表示).
已知函数.(1)求函数的最小正周期;(2 )当时,求函数的最大值,最小值.
若椭圆的左右焦点分别为,线段被抛物线的焦点内分成了的两段. (1)求椭圆的离心率; (2)过点的直线交椭圆于不同两点、,且,当的面积最大时,求直线的方程.