若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数.(1)判断下列函数:①;②中,哪些是等比源函数?(不需证明)(2)证明:函数是等比源函数;(3)判断函数是否为等比源函数,并证明你的结论.
若非零函数对任意实数均有,且当时(1)求证:;(2)求证:为R上的减函数;(3)当时, 对恒有,求实数的取值范围.
已知函数,且.(1)判断的奇偶性并说明理由;(2)判断在区间上的单调性,并证明你的结论;(3)若在区间上,不等式恒成立,试确定实数的取值范围.
湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元,为整数.(1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出最大值.
已知函数(1)求函数的定义域和值域;(2)若有最小值-2,求的值.
(1)计算:(2)已知,求的值.