已知函数,且.(1)判断的奇偶性并说明理由;(2)判断在区间上的单调性,并证明你的结论;(3)若在区间上,不等式恒成立,试确定实数的取值范围.
.(本小题满分14分) 给定两个长度为1的平面向量和,它们的夹角为120°.如图所示,点C在以O为圆心的圆弧上变动.若,其中x,yÎR,试求x+y的最大值.
(本小题满分10分)已知函数y=Asin(wx+j)(A>0,w>0,0<j<p)最大值是2,最小正周期是,直线x=0是其图象的一条对称轴,求此函数的解析式.
.(本小题满分10分)求(cos220°-)·(1+tan10°)的值.
.(本题10分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的方程;(2)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.
(本题10分)在如图的长方体中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)当E为AB的中点时,求点E到平面ACD1的距离;(2)AE等于何值时,二面角D1-EC-D的大小为.