.(本小题满分14分) 给定两个长度为1的平面向量和,它们的夹角为120°.如图所示,点C在以O为圆心的圆弧上变动.若,其中x,yÎR,试求x+y的最大值.
设数列的前n项和为,,且成等比数列,当时,. (1)求证:当时,成等差数列; (2)求的前n项和.
已知函数. (1)若,求的取值范围; (2)设△的内角A、B、C所对的边分别为a、b、c,已知为锐角,,,,求的值.
已知函数,,. (1)若当时,恒有,求的最大值; (2)若当时,恒有,求的取值范围.
已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为. (1)把圆C的极坐标方程化为直角坐标方程; (2)将直线向右平移h个单位,所得直线与圆C相切,求h.
已知. (1)求函数的最大值; (2)设,,且,证明:.