(本题10分)在如图的长方体中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)当E为AB的中点时,求点E到平面ACD1的距离;(2)AE等于何值时,二面角D1-EC-D的大小为.
已知函数是上的偶函数. (1)求的值; (2)证明函数在上是增函数.
如图,A、B、C、D是空间四点,在△ABC中,AB=2,AC=BC=,等边△ADB所在的平面以AB为轴可转动. (Ⅰ)当平面ADB⊥平面ABC时,求三棱锥的体积; (Ⅱ)当△ADB转动过程中,是否总有AB⊥CD?请证明你的结论
根据市场调查,某商品在最近的20天内的价格与时间满足关系,销售量与时间满足关系,,设商品的日销售额为(销售量与价格之积). (1)求商品的日销售额的解析式; (2)求商品的日销售额的最大值.
如图,在正方体ABCD—A1B1C1D1中,M、N、G分别是A1A,D1C,AD的中点.求证: (Ⅰ)MN//平面ABCD; (Ⅱ)MN⊥平面B1BG.
计算下列各式: (1);(2)