已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率. (1)求椭圆的标准方程;(2)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
已知为奇函数的极大值点, (1)求的解析式; (2)若在曲线上,过点作该曲线的切线,求切线方程.
如图,已知球的半径为,球内接圆锥的高为,体积为, (1)写出以表示的函数关系式; (2)当为何值时,有最大值,并求出该最大值.
设, (1)解方程; (2)解不等式.
在区间内任取两个数(可以相等),分别记为和, (1)若、为正整数,求这两数中至少有一个偶数的概率; (2)若、,求、满足的概率.
(本小题满分14分) 设函数是定义在上的减函数,并且满足,, (1)求的值, (2)如果,求x的取值范围。