已知函数.(1)求函数的单调区间;(2)证明:对任意的,存在唯一的,使;(3)设(2)中所确定的关于的函数为,证明:当时,有.
(本小题满分12分)某市的教育研究机构对全市高三学生进行综合素质 测试,随机抽取了部分学生的成绩,得到如图所示的成绩 频率分布直方图.(I )估计全市学生综合素质成绩的平均值;(II)若评定成绩不低于8o分为优秀.视频率为概率,从 全市学生中任选3名学生(看作有放回的抽样),变量表示 3名学生中成绩优秀的人数,求变量的分布列及期望 )
(本小题满分12分)已知函数(I)求函数f(x)的最小正周期;(II)求函数f(x)在区间上的最大值和最小值.
(本小题满分12分)已知为坐标原点,点分别在轴轴上运动,且=8,动点满足 =,设点的轨迹为曲线,定点为直线交曲线于另外一点(1)求曲线的方程;(2)求 面积的最大值。
(本小题满分12分)正项数列的首项为,时,,数列对任意均有(1)若,求证:数列是等差数列;(2)已知,数列满足,记数列的前项和为,求证.
(本小题满分12分)双曲线与双曲线有共同的渐近线,且经过点,椭圆以双曲线的焦点为焦点且椭圆上的点与焦点的最短距离为,求双曲线和椭圆的方程。