A高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A高校自主招生考试,已知该生在每道程序中通过的概率均为,每道程序中得优、良、中的概率分别为p1、、p2.(1)求学生甲不能通过A高校自主招生考试的概率;(2)设X为学生甲在三道程序中获优的次数,求X的概率分布及数学期望.
设是首项为,公差为的等差数列,是其前项和.(1)若,,求数列的通项公式;(2)记,,且、、成等比数列,证明:.
已知函数和的图象关于轴对称,且.(1)求函数的解析式;(2)当时,解不等式.
已知,,.(1)若,求的值;(2)设,若,求、的值.
设函数.(1)当,时,求函数的最大值;(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;(3)当,时,方程有唯一实数解,求正数的值.
新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不低于万元,同时不超过投资收益的.(1)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型的基本要求.(2)下面是公司预设的两个奖励方案的函数模型:①; ②试分别分析这两个函数模型是否符合公司要求.