某商店试销某种商品20天,获得如下数据:
试销结束后(假设该商品的日销售量的分布规律不变).设某天开始营业时由该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品视为件数,求X的分布列和数学期望.
本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 如图,已知正方体的棱长为2,分别是的中点. (1)求三棱锥的体积; (2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).
已知函数的定义域为,求函数的值域和零点.
(本题共3小题,满分18分。第1小题满分4分,第2小题满分7分,第3小题7分) 对定义在上,并且同时满足以下两个条件的函数称为函数. ① 对任意的,总有; ② 当时,总有成立. 已知函数与是定义在上的函数. (1)试问函数是否为函数?并说明理由; (2)若函数是函数,求实数的值; (3)在(2)的条件下,是否存在实数,使方程恰有两解?若存在,求出实数的取值范围;若不存在,请说明理由.
(本题共3小题,满分16分。第1小题满分4分,第2小题满分6分,第3小题6分) 设数列的前项和为,若对任意的,有且成立. (1)求、的值; (2)求证:数列是等差数列,并写出其通项公式; (3)设数列的前项和为,令,若对一切正整数,总有,求的取值范围.
(本题共2小题,满分14分。第1小题满分6分,第2小题满分8分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,造成堵塞,此时车流速度为千米/小时;当车流密度不超过辆/千米时,车流速度为千米/小时,研究表明;当时,车流速度是车流密度的一次函数. (1)求函数的表达式; (2)当车流密度为多大时,车流量(单位时间内通过桥上某一点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).