甲、乙两地相距s km , 汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元。把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;为了使全程运输成本最小,汽车应以多大速度行驶?
已知命题“椭圆的焦点在轴上”; 命题在上单调递增,若“”为假,求的取值范围.
如图,已知直线()与抛物线:和圆:都相切,是的焦点. (Ⅰ)求与的值; (Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上; (Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
已知函数 (Ⅰ)若函数恰好有两个不同的零点,求的值。 (Ⅱ)若函数的图象与直线相切,求的值及相应的切点坐标。
已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为 (Ⅰ)求椭圆的标准方程; (Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。
已知函数f(x)=cos(2x+)+-+sinx·cosx ⑴ 求函数f(x)的单调减区间;⑵ 若xÎ[0,],求f(x)的最值; ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.