巳知椭圆的离心率是.⑴若点P(2,1)在椭圆上,求椭圆的方程;⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
(本小题满分10分)选修4—4 参数方程与极坐标求圆被直线(是参数截得的弦长.
(本小题满分10分)选修4—1 几何证明选讲在直径是的半圆上有两点,设与的交点是.求证:
(本小题满分12分)已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)数列满足:,且,记数列的前n项和为,且.(ⅰ)求数列的通项公式;并判断是否仍为数列中的项?若是,请证明;否则,说明理由.(ⅱ)设为首项是,公差的等差数列,求证:“数列中任意不同两项之和仍为数列中的项”的充要条件是“存在整数,使”
(本小题满分12分)
Q
已知椭圆:的一个焦点是(1,0),两个焦点与短轴的一个端点
(本小题满分12分)某种食品是经过、、三道工序加工而成的,、、工序的产品合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.(Ⅰ)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;(Ⅱ)设为加工工序中产品合格的次数,求的分布列和数学期望.