在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.(1)求证:AC⊥B1C;(2)若D是AB中点,求证:AC1∥平面B1CD.
(本小题满分12分)4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)
(本小题满分12分)在中,角的对边分别为,且满足(1)求角B的大小;(2)若的面积为,求的值.
已知函数,其中.(Ⅰ)当时,判断在区间上的单调性;(Ⅱ)当时,若不等式对于恒成立,求实数的取值范围.
已知椭圆,为坐标原点,直线与椭圆交于两点,且.(Ⅰ)若直线平行于轴,求的面积;(Ⅱ)若直线始终与圆相切,求的值.
如图,在矩形中,,为的中点.将沿折起,使得平面平面.点是线段的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:;(Ⅲ)过点是否存在一条直线,同时满足以下两个条件:①平面;②.请说明理由.