已知椭圆的左右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形.(1)求椭圆方程;(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点,证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点?若存在,求出点Q的坐标;若不存在,请说明理由.