(本小题满分13分) 已知,函数.(1)求函数的最小正周期;(2)求函数的单调减区间;(3)当时,求函数的值域.
已知函数满足; (1)求常数k的值;(2)若恒成立,求a的取值范围.
如图,在四棱锥中,底面是边长为的正方形,侧面底面, 若、分别为、的中点. (Ⅰ) //平面;(Ⅱ) 求证:平面平面;
.已知函数f(x)=在[0,1]上的最小值为, (1)求f(x)的解析式;(2)证明:f(1)+f(2)+…+f(n)>n-+(n∈N)
对于定义域为D的函数,若同时满足下列条件: ①在D内单调递增或单调递减; ②存在区间[],使在[]上的值域为[];那么把()叫闭函数。 (1)求闭函数符合条件②的区间[]; (2)判断函数是否为闭函数?并说明理由; (3)若是闭函数,求实数的取值范围。
F1、F2为双曲线的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足:,(λ>0) (1)求此双曲线的离心率; (2)若过点N(,)的双曲线C的虚轴端点分别为B1、B2(B1在y轴正半轴上),点A、B在双曲线上,且,,求双曲线C和直线AB的方程。