(本小题满分12分) 设函数,已知是奇函数.(1)求b、c的值;(2)求的单调区间与极值.
(本题14分)已知数列满足:,. (1)求数列的通项公式; (2)若,求数列的前项和.
(本题14分)在中,已知 (1)求角C; (2)若,求的最大值.
(本小题满分14分)已知椭圆的右焦点为,且点在椭圆上,为坐标原点. (Ⅰ)求椭圆的标准方程; (Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围; (Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
(本小题满分13分)已知函数. (Ⅰ)求函数的极大值; (Ⅱ)设定义在上的函数的最大值为,最小值为,且,求实数的取值范围.
(本小题满分12分)已知数列的前项和为,,,. (Ⅰ)求证:数列是等比数列; (Ⅱ)设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值.