以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.(1).求直线l的参数方程及圆C的极坐标方程;(2).试判断直线l与圆C有位置关系.
已知函数若在时有极值,求的值;(2)在(1)的条件下,若函数的图象与函数的图象恰有三个不同的交点,求实数的取值范围.
已知抛物线()的准线与轴交于点.(1)求抛物线的方程,并写出焦点坐标;(2)是否存在过焦点的直线(直线与抛物线交于点,),使得三角形的面积?若存在,请求出直线的方程;若不存在,请说明理由.
某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,… ,后得到如图的频率分布直方图.(1)求图中实数的值;(2)若该校高一年级共有学生500人,试估计该校高一年级在这次考试中成绩不低于60分的人数.(3)若从样本中数学成绩在与两个分数段内的学生中随机选取两名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
已知:,:函数存在极大值和极小值,求使“”为真命题的实数的取值范围.
已知函数.(1)若,解方程;(2)若函数在上单调递增,求实数的取值范围;(3)若且不等式对一切实数恒成立,求的取值范围