以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.(1).求直线l的参数方程及圆C的极坐标方程;(2).试判断直线l与圆C有位置关系.
正四面体边长为2.分别为中点. (1)求证:平面; ((2))求的值.
如图,已知是⊙的切线,为切点.是⊙的一条割线,交⊙于两点,点是弦的中点.若圆心在内部,则的度数为___.
函数. (1)令,求的解析式; (2)若在上恒成立,求实数的取值范围; (3)证明:.
椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点. (1)求椭圆的方程及线段的长; (2)在与图像的公共区域内,是否存在一点,使得的弦与的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.
设数列的前n项的和与的关系是. (1)求数列的通项; (2)求数列的前项和.