椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点.(1)求椭圆的方程及线段的长;(2)在与图像的公共区域内,是否存在一点,使得的弦与的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.
(本小题满分12分,(1)小问4分,(2)小问8分) 已知函数在处达到极值, (1)求的值; (2)若对恒成立,求的取值范围.
(本小题满分13分,(1)小问6分,(2)小问7分) 已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且 (1)求直线的方程; (2)求圆的方程.
(本小题满分13分,(1)小问6分,(2)小问7分) 如图,在四棱锥中,底面为直角梯形,,,底面,且,、分别为、的中点. (1)求证:平面; (2)求证:.
(本小题满分13分,(1)小问7分,(2)小问6分) 已知函数, (1)求函数在点处的切线方程; (2)求函数的单调递减区间.
已知椭圆的左右焦点分别为,为半焦距, (1)求椭圆离心率的取值范围; (2)设椭圆的短半轴长为,以为圆心,为半径作圆,圆与轴的右交点为,过点作倾斜角不为直线与椭圆相交于两点,若,求直线被圆截得的弦长的取值范围。