如图,在三棱柱中,侧面为菱形,且,,是的中点.(1)求证:平面平面;(2)求证:∥平面.
分已知函数为大于零的常数。(1)若函数内单调递增,求a的取值范围;(2)求函数在区间[1,2]上的最小值。
已知在时有极大值6,在时有极小值,求的值;并求在区间[-3,3]上的最大值和最小值.
已知:是一次函数,其图像过点,且,求的解析式。
已知复数,则当m为何实数时,复数z是(1)实数;(2)虚数;(3)纯虚数;(4)零;(5)对应的点在第三象限
如图所示,流程图给出了无穷等差整数列,时,输出的时,输出的(其中d为公差)(I)求数列的通项公式;(II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。