设函数.(1)求的最小正周期和值域;(2)在锐角△中,角的对边分别为,若且,,求和.
△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2-a2+bc=0.(1)求角A的大小;(2)若a=,求bc的最大值;(3)求的值.
在△ABC中,已知a=,b=,B=45°,求A、C和c.
设n和m是两个单位向量,其夹角是60°,求向量a=2m+n与b=2n-3m的夹角.
已知a=,且∈.(1)求的最值;(2)若|ka+b|=|a-kb| (k∈R),求k的取值范围.
已知平面上三个向量a、b、c的模均为1,它们相互之间的夹角均为120°.(1)求证:(a-b)⊥c;(2)若|ka+b+c|>1 (k∈R),求k的取值范围.